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Integrated Substrate and Thin Film Design Methods

Abstract - An artificial neural network cascade, containing 16 individual neural network
modules and approximately 1,000 processing units, has produced an interactive database
containing a broad range of chemical and physical properties for nearly a quarter
million potential binary and ternary chemical systems. While many of these hypothetical
materials are anticipated to be thermodynamically stable, they are most likely kinetically
inaccessible via typical bulk chemistry routes. However, since modern thin film
technology allows a wide range of exotic compositions and stoichiometries via
deposition, surface treatments, and nano-fabrication, it is anticipated that this newly
acquired theoretical database will form a comprehensive roadmap to the formation of
previously unattainable materials that offer significant technological advantages.
Further, with the suite of available coating materials greatly expanded, thin film
designers now have at their disposal the means to implement multi-layer and composite
thin film device designs that fulfill a much broader range of performance requirements
and that are ideally matched to both underlying substrate and external working
environment.

1. Introduction

1.1 Motivation for a Theoretical Database of Filming Materials

The first stage in the design of any thin film device is the identification of the necessary
chemical and physical attributes of the constituent films. For instance, in the design of a
multi-layer optical stack, one generally begins with a prescription for the optical
thickness of each film layer (nd), along with the refractive indices of both substrate and
the external medium. Typically, the thin film designer seeks materials that not only
satisfy these optical requirements, but likewise offer other favorable characteristics such
as chemical stability and wear resistance. From these specifications the designer then
chooses from a relatively narrow suite of known optical filming materials. Unfortunately,
the lack of filming materials satisfying the overall device formulation may force the total
redesign of the thin film structure. Effectively, materials availability currently drives thin
film design.

With the development of advanced film growth procedures such as pulsed laser
deposition, molecular beam epitaxy, and nano-fabrication techniques, it is now possible
to specifically tailor materials to meet general thin film design requirements. The new
problem becomes one of theoretically predicting and producing the needed materials,
many of which have never been purposely synthesized. Although the condensed matter
theoretician may have many predictive tools at his disposal, such as quantum
mechanically-based band calculations, such methodologies require painstaking care in set
up and significant CPU time to implement. Disappointingly, the resulting calculations
apply only to very narrow regimes of composition and phase. What is needed is a
sweeping prediction of materials properties without recourse to highly specialized ab
initio techniques.

Imagination Engines, Inc. 3
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Artificial neural networks afford a convenient means of estimating materials properties.
In contrast to traditional computational approaches, neural networks can rapidly form
their own models, interrelating attributes of composition and phase to both physical and
chemical characteristics. Such neural networks could, for instance, be used to scan large
databases of known materials producing estimates of key properties for each formula and
phase. The problem with such a data mining approach would be the evaluation of
potential yet unsynthesized or unreported chemical compounds and systems that would
obviously be absent from such a relatively static database of known materials.

What is needed is a generative technique that may recommend multitudes of potential
chemical systems whose materials properties may be subsequently evaluated via readily
attainable neural network models. One candidate approach would involve the building of
an algorithmic production system that embodies a knowledge base of rules of chemical
bonding, valence, charge neutrality, etc. The problem with such a scheme is that the
underlying chemical heuristics remain piecemeal at this time. Typically, crystallographic
systems are usually rationalized only after their actual discovery, with industrious x-ray
crystallographers deducing underlying stoichiometry and structure only after the material
is in hand. Occasionally, small substitutional variations are foreseen, but rarely does
condensed matter physics theorize and then fabricate such novel crystal structures from
scratch.

Alternately, one may consider genetic algorithms (GA) as the route to building such a
generative engine. The pitfalls in this methodology, especially when applied to chemical
formulation problems, are the risks of combinatorial explosion and the production of
genetic mutations that do not necessarily embody chemical constraint relations.
Specifically, as genes or alleles randomly combine, there is no foreknowledge by the
underlying engine that the resulting formula or structure will indeed be a plausible one.
Typically any critics or objective functions are inundated in selecting the most robust
species. Finally, there is no facility by which these algorithms may adapt and hence learn
from their own mistakes.

A newer alternative (that may in fact readily learn from its experience) is that of the
patented "Creativity Machine Paradigm" (Thaler, 1997, U.S. Patent 5,659,666), in which
the search engine consists of either an internally or externally perturbed artificial neural
network trained upon large numbers of verified chemical species. Exposure of this net to
various forms of synaptic noise tends to drive it into activation states representing new
and plausible chemical species. Allowed to run in this 'dreaming' mode, immense
databases may be populated with materials that have a high likelihood of being
synthesized, In contrast to the GA approach, each new species proposed by the perturbed
net obeys cumulatively gleaned constraint relations acquired through its training exposure
to known chemical systems. Hence chemical attributes mutate in a cooperative way,
wherein all 'genes' (i.e., atoms, stoichiometry, and structure) are mutually sensitive to
one another's state.

Further, if each species proposed by such a dreaming network is evaluated for its
anticipated properties by subsidiary neural network modules, a veritable encyclopedia of

Imagination Engines, Inc. 4
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potential chemical compounds may be amassed. Now, thin film designers have at their
disposal a continuum of materials possibilities to fulfill a wide range of specific device
and / or performance requirements. In all likelihood, it is in the thin film laboratory,
rather than in a bulk chemistry community, that these novel materials will be realized.
This unique advantage stems from the wide range of thin film procedures at their disposal
that may rapidly produce quasi-stable materials in small proportions. These techniques
include (1) chemical vapor deposition, (2) pulsed laser deposition, (3) molecular-beam
epitaxy, (4) ion-beam implantation, (5) laser and x-ray surface conversion and
modification, (6) splat-cooling, and (7) spallation, and (8) nano-fabrication techniques
involving Scanning Tunneling Electron Microscopy (STEM). Effectively, this suite of
thin film processing technique would allow the rapid prototyping of novel materials
discovered by a Creativity Machine.

1.2 The Creativity Machine Paradigm

internal noise inputs clamped

Imagination
Stream of .Engine

Ideas (LE)

feedback- Alert
a Associative

of Ides Center
(AAC)

outputs

Figure 1. A Simple Creativity Machine. Here, the starbursts represent 'hopping'
perturbations among the connection weights of the imagination engine.

Rumelhart and colleagues (1986) emphasized the utility of parallel distributed processing
systems as constraint satisfaction networks in their pioneering work. Using "hand-wired"
competitive networks exposed to various room schemata, they were able to demonstrate a
primitive brand of creativity in which novel, yet plausible furniture combinations were
predicted. Using the well-known principle of vector completion, the net could accept
incomplete inputs representing a partially described room and through subsequent
annealing could arrive at a fuller description of that room. Therefore, when only supplied
with the inputs of a stove and a coffee cup, the net could finally arrive at a network state
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in which additional processing units corresponding to a refrigerator, sink, and oven could
be likewise activated. In other words, the net was prescribing a plausible room setting
that it may not have "seen" within its training experience. In this sense, such a network
was inventing new room types.

It has recently been demonstrated (Thaler, 1995, 1996 a, b, c) that a trained artificial
neural network supplied no inputs whatsoever, and driven by stochastic perturbations to
its internal architecture may generate self-consistent schemata related to the conceptual
space embodied within its training exemplars. In short, the network is perceiving
something when in fact there are no presented environmental inputs. Accordingly the
term "virtual input effect" has been coined to describe the phenomenon. Contacting with
Rumelhart's work, if we were to train a simple auto-associative feedforward net on
numerous examples of room schemata (hence bypassing the tedious Bayesian statistics
used to construct his net), setting the inputs of the network to values of zero and then
randomly perturbing the connection weights from their trained values, we would observe
a progression of network activations corresponding to plausible furniture schemes. The
difference in operating procedure from Rumelhart's work is significant, representing the
distinction between perception with its processing of environmental features, and internal
imagery with its inherent independence from such external entities. In the Rumelhart's
original work, an associative net is interpreting some partial environmental vector as
something it has never seen. In the case of virtual input effect, the net is in a state
tantamount to sensory deprivation, in effect hallucinating within a silent and darkened
room.

When supplied no external inputs, the production of meaningful activations by the
network relies upon a different brand of vector completion than is normally discussed.
Rather than fill in incomplete or corrupted input patterns, the net attempts to complete
internal, noise-induced activation patterns within the net's encryption layers. Therefore,
any local or temporary damage to the network's mapping is interpreted by downstream
layers as some "familiar" activation pattern normally encountered upon application of a
training exemplar to the network's inputs (Thaler, 1995). Because of the many
combinatorial possibilities in perturbing connection weights within a network, we arrive
at a means for generating proportionately more novel schema than is possible with input
perturbations alone. Furthermore, because the connection traces within a trained neural
network generally correspond to the rules binding the underlying conceptual space
together, such stochastic perturbation schemes serve to soften these rules, in turn
allowing a gradual departure from the known space of possibilities. The result is a strictly
neurological search engine whose internal noise level may be parametrically increased to
achieve progressively more novel concepts. I call such a chaotic network an imagination
engine or IE.

By attaching to the IE a critic network (termed an alert associative center or AAC) that
has been trained by example to recognize any emerging concept that possesses utility or
value, a Creativity Machine (Figure 1) is formed. Because the only inputs to this closed
loop system take the form of unintelligible stochastic perturbations (i.e., heat), the system
is deemed autonomous. Therefore, it monitors its own chaotically generated stream of
consciousness, if you will, periodically extracting and isolating any concepts offering
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usefulness. The critic net may in turn modulate the intensity of perturbation within the
first net, willfully dropping the computational temperature within the IE when that
network appears to be on the right track (i.e., an attentional mechanism).

Table 1. Some Recent Creativity Machine Successes

Application Area Outcome Reference
musical composition copyrighting of 11,000 novel U.S. Copyright PAu-1-920-845

musical 'hooks' "Musical Themes From Creativity Machine"
materials discovery autonomous generation of a Autonomous Materials Discovery via

materials database, including Spreadsheet-Implemented Neural Network
potentially new ultrahard materials Cascades, JOM-e, 49(4) (1997)
and high-temperature http://www.tms.org/pubs/joumals/JOMI970
superconductors 4/Thaler

beverage invention a dynamic database of over 15,000 http://www.imagination-
mixed drinks engines.com/NeuralBar/Nbar.htm

personal hygiene 20% improvement in performance Gillette / Oral-B
product design over existing designs
control system successful construction and testing U.S. Air Force SBIR contract AF96-152,

of thin film coating reactor control Automated Data Acquisition For In Situ
system that invents recovery paths. Material Process Modeling

new supermagnet significant fabrication cost Basic Research Corp.
formulations reduction in FeB-R ceramic

__ supermagnets.

retail portfolio Creativity machine successfully Anheuser-Busch, Inc.
distribution recommends shelving distributions

as a function of demographics
surrounding retail outlet .

The practicality and successes (see Table 1 for a few examples) of the Creativity Machine
paradigm stem from the fact that all networks involved are trained by example.
Therefore, as long as historical data exist within any conceptual space, backpropagation
or any other neural network learning paradigm may be used to rapidly train the required
Creativity Machine networks. This ease of construction has allowed the building of a
wide variety of Creativity Machines focused on diverse knowledge spaces, ranging from
music composition, to ultrahard materials discovery, to the invention of personal hygiene
products.

Common to the operation of most Creativity Machines built to date is a perturbation
scheme in which small disturbances stochastically "hop" among the connection weights
of the network. To parametrize the internal chaos within the 1E, the governing algorithm
parcels out n perturbations, usually of fixed or average magnitude a, then randomly and
cyclically distributes them among the N total connection weights of the IE. In Figure 2,
for instance, when network inputs are clamped, the governing algorithm places four
perturbations (represented by starbursts) of fixed magnitude at time to, resulting in a
distinct activation pattern at the network's outputs that represents some idea or concept.
On every half cycle, to + 8t/2, the perturbations are removed, restoring the net to its
trained-in state. Finally, in initiating a new cycle at time to + 8t, the algorithm randomly
places the n perturbations of magnitude a on newly chosen connection weights. When

Imagination Engines, Inc. 7
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viewed as a rapid graphical succession, the hopping motion resembles a boiling liquid,
hence suggesting the term "cavitation" to describe this specific agenda of stochastic
network perturbation.

ooo OO0 O..

to to+8t/2 to+8t

Figure 2. "Cavitation" of the Imagination Engine.

Therefore, during operation the Creativity Machine may be run under a whole range of
operating conditions governed by the parameters n, a, and & that collectively specify the
level of cavitation applied to the IE. Obviously, applying no perturbation at all (n = 0 or a
= 0) to the IE will result in no activation turnover and hence no idea generation.
Alternatively, applying large perturbations n and a will produce such significant
degradation to the network mapping that all constraints are destroyed within the captured
knowledge domain. The result of severe perturbation is therefore to produce totally
unconstrained activation patterns containing little, if any, information content. The
former regime consists of vanishingly small perturbations and is regarded as "Neo-
Lamarckian" in nature (Rowe and Partridge, 1993), representing a highly constrained and
hence inefficient discovery mechanism. The latter unconstrained search regime, at high
values of n and a, is considered "Neo-Darwinian" (i.e., the working regime of genetic
algorithms) and is likewise inefficient due to the extensive sifting required by the critic
network to find meaningful information among the multitudes of unconstrained concepts
produced.

Obviously the ideal regime for Creativity Machine operation lies somewhere between the
Neo-Darwinian and Neo-Lamarckian search regimes. To achieve the necessary level of
internal perturbation, the parameters n and arare adjusted so that the quantity na/N
(where N is the total number of connection weights in the IE) is approximately 0.05-0.06,
representing the mean perturbation per connection weight in the IE. Dividing through by
&, the perturbation time constant depicted in Figure 2, we obtain a parameter called the
"cavitation rate,"

p = naT/N t, (1)

representing the mean rate of perturbation for any connection weight in the IE and the
single most important controlling parameter of both the quantity and quality of concepts
generated by the overall Creativity Machine architecture.

Imagination Engines, Inc. 8
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Analytically, the choice of mean perturbation no/N = 0.06 generally defines a cusp in
network behavior that separates a regime of perturbation level corresponding to intact
memory recall from that of increasingly corrupted memory generation (i.e.,
confabulation). This transition in the fidelity of network activations is a generally
observed pattern among all IEs used to date and is exemplified in Figure 3, where we see
this behavioral transition in a plot of the probability of intact memory production versus
cavitation rate within a small internally perturbed network with constant inputs. The net
has been trained to contain the memory of 16 binary vectors. This distinct separation
between intact memory and confabulation persists even within more abstract conceptual
spaces that may include subjective areas such as musical composition or more objective
problems as in the discovery of new high-temperature superconductors (as discussed in
Figure 4).

0.012

P,(O)da = probability of an intact memory
between a and o+da.

0.010 0,0.:.

°:1 1

10 0 0

tc 0 0

000 nG/N=0.06 ..

OM
intact memories = confabulations

0.000 , , ,

0.0 0.1 0.2 0.3 0.4 0.5 080 0.7 0.8 0.9 1.0

p = no/N&
Figure 3. The Probability of the Noise-Induced Activation of an Intact Network Memory
as a Function of the Cavitation Rate, p Note the cusp near nal/N0=.06 dividing intact
from corrupted memory recall. The plot is the result of 1, 000 cavitation cycles applied to
the simple auto-associative net shown in the inset, trained on 16 binary vectors,
subjected to n=4 perturbations of variable magnitude a and a time constant & of 0.3 sec.
Inputs of the net were clamped at the binary memory (1, 0, 0, 0).

We find in general that the most fertile cavitation regime corresponds to mean connection
weight perturbations near 0.06. At lower perturbation levels the IE revisits largely
training exemplars and their generalizations. At progressively higher levels of connection
weight perturbation, the IE produces less constrained and hence more nonsensical fi
possibilities (i.e., noise).

Realizing that the connection weights of a neural network implicitly contain the rules and
schema that bind together any given conceptual space, the perturbation scheme embodied
within cavitation effectively experiments with these rules by softening them either

Imagination Engines, Inc. 9
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individually or in parallel while the AAC judges the utility of the resulting concepts. A
mean connection weight perturbation of approximately 0.06 appears to be a universal
amount by which to soften these internal rules without producing nonsensical or known
concepts. Symbolically representing the constraint relations within any given neural
network as the unit sphere, coherent concepts that embody most of the useful ideas
emerging from an IE fall within a thin membrane surrounding the na/N = 0.06 surface,
no matter what the conceptual space involved. Excursions too far beyond this surface,
where n/N >> 0.06, generally produce nonsense, as intimated in Figure 4.

"Aey Passions- Nose

To be Pernrmed by HeO3S 0
the Rabid Dogs 0 "MOoM
in 1998 River"

Perfortmed by

00/T a, CU7 Cu 0

Maene fromi F sharp c

"Sound of Music" HgBa2CuO4

9 = training exemplar
o = invented

Figure 4. The invention of a plausible concept by the imagination engine takes place
within a membrane surrounding the na/N = 0.06 surface, corresponding to the cusp
region in Figure 3. Excursions in mean connection weight perturbation significantly
beyond this regime produce noise.

1.3 Creativity Machine Families Applied to Materials Discovery

Many variations exist on the patented Creativity Machine (CM) architecture, but typically
four main families have been described. These categories are elaborated below, in the
specific context of materials discovery applications.

1.3.1 Type I Creativity Machine

This CM class is distinguished by the fact that noise is applied only to input nodes of an
1E network to implement a purely stochastic search, based entirely upon network outputs
(i.e., no separate critic net is utilized). Such imagination engines are useful in solving
problems in which there are no mutual constraints among the perturbed input attributes.
Such stochastic nets are used in mixture problems, wherein there are few restrictions
upon the proportions of any given ingredient (i.e., paints). Characteristically, the
output(s) of such an IE are patrolled for maxima or minima in certain mixture attributes,
until the uphill climb results in an optimal materials formulation. Obviously, the Type I
CM is ill-suited to stoichiometric chemical problems due to the complex chemical
constraints involved in determining fitting stoichiometric indices x, y, and z for any
combination of elements A, B, and C.

Imagination Engines, Inc. 10
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1.3.2 Type H Creativity Machine

When complex relations exist among the attributes of a given problem, the Type II
imagination engine is called into play. Typically the imagination engine consists of an
auto-associative network that tends to classify internal synaptic perturbation as either (1)
training exemplars (i.e., memory recall) or (2) novel patterns, representing plausible
generalizations of the training exemplars. In single-pass operation of such IE nets,
feedforward propagation, driven by noise, produces novel possibilities that are then
filtered for utility by an attached neural network critic or algorithm. The perturbation
scheme used involves the network cavitation process embodied in Equation 1. Typically
the phase boundary between memory recall and useful confabulation falls at the mean
synaptic perturbation level of naN = 0.06 Such Type II CMs are likewsie inappropriate
to stoichiometric discovery since single pass operation tends to deliver only
approximations to potential chemical compositions. That is, a single feedforward
operation does not allow the net to seek and completely settle into an appropriate attractor
basin representing a potential chemical species.

1.3.3 Type 1I Creativity Machine

If a Type II auto-associative IE is made recurrent, repetitive feedforward propagation of
any internal network perturbation tends to push the network activation state into various
attractor basins representing either (1) memories or (2) confabulations that exercise the
learned constraints relations among the problem attributes. A network critic or algorithm
may monitor the emerging memories and confabulations for utility or value. Such
networks are ideal for capturing the myriad constraint relations among constituent
elements A, B, and C and their respective stoichiometries x, y , and z. Furthermore,
multiple stoichiometries x, y, and z for fixed elements A, B, and C may be accessed by
such nets, owing to the many-to-many mapping afforded by auto-associative nets.
Therefore, such a net may visit attractor basins representing H20 2, as well as H20.

Important to realize in the function of a Type III Creativity Machine applied to
stoichiometric discovery, is that the imagination engine works as an auto-associative
memory that begins operation with pinned inputs representing, for instance, fixed
elements A, B, and C. The remaining inputs for the stoichiometries x, y, and z remain
free to vary. By applying random numbers (i.e., noise) to these free stoichiometric nodes,
the network attempts to activate into the closest memory (i.e., a training exemplar) of a
chemical species encountered in training.

If the element representation consists of core and valence shell electron populations (i.e.,
inert gas core along with outer s, p, d, and f electrons) and a novel element combination
ABC is applied to the input nodes, the network will recurrently converge toward an
activation state that minimizes the Euclidean distance between its activation state and that
of a training exemplar. If the recursion is initiated with elements A, B, and C fixed, the
free stoichiometric nodes vary to match subscripts on the closest isoelectronic species.
Therefore, if a net has been exposed to the compound Si3N4 in training and the elemental
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combination C and N are applied to his recurrent net, activation into the state
representing C3N4 is highly likely. Hence, such a chemical imagination engine may be
used to generate isoelectronic series that may later be evaluated for their thermodynamic
plausibility.

1.3.4 Type IV Creativity Machine

The CMs of this class represent various hybridizations of Types I-III. Typically these
Creativity Machines consist of many neural network modules. Such cascade architectures
may consist of multiple IEs and/ or multiple critic nets. The Creativity Machine chosen
for this SBIR is belongs to the Type IV class, and consists of a two preliminary IE nets
(i.e., a 'primer' and a Type III recurrent auto-associative net). 14 downstream network
modules perform a parallel calculation on the emerging materials concepts, AxByCz,
simultaneously calculating accompanying physical and chemical properties.

Using such a Type IV Creativity Machine a broad survey was conducted in a search of
new ultrahard binary systems (Thaler, 1998). That work served as a template for the work
described below in which a much broader suite of materials properties were projected.

1.4 Materials Properties Sought by the Materials Discovery Creativity
Machine

In the current Creativity Machine effort, rather than seek fundamental constitutive
parameters, such as dielectric constants and band gaps, for each hypothetical material,
emphasis was instead placed upon basic properties known to have more directly
measurable and pragmatic thin film engineering value. The properties deemed most
useful and known to offer extensive databases for neural network training, were as
follows.

1.4.1 Standard Gibbs Free Energy of Formation

As discussed above, the candidate chemical systems generated by the imagination engine
are actually isoelectronic variations on the known compounds used as training exemplars.
Therefore, additional thermodynamic information must be used to establish the ultimate
stability and hence plausibility of any of the machine-proposed materials. For this
purpose, the Gibb's standard free energy of formation AGfO, was calculated for each
species recommended by the imagination engine.

1.4.2 Partial Charge

The imagination engine tends to capture the overall patterns of stable chemical species,
most notably the tendency of binding atoms to form electronic structures similar to those
of inert gases. Therefore, the imagination engine tends to occasionally generate the
formulas of ions (i..e., OH-, H30+). To ultimately distinguish neutrals within the
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resulting database, a separate calculation is needed to provide the most likely charge on
the resulting material.

1.4.3 Lattice Constants

An often encountered problem in epitaxial depositions, as well as in the design of
multilayer thin film structures, is the inherent mismatch between layers and the
underlying substrate materials. The ability to adjust the atomic registry between such
layers, using the resulting design database, should prove beneficial. Furthermore, an
approximate idea of unit cell dimensions and angles yields some notion of the phases
available to each composition.

1.4.4 Melting Point

Often, the intended coating or thin film device must retain its stability and functionality
within harsh thermal environments. Having the freedom to choose among myriad
materials having the same desired properties, yet a wide spread in melting point, should
likewise yield optimized thin film designs.

1.4.5 Density

Since large variations in constituent film densities, may result in large acoustic
impedance mismatches between layers, and hence heightened susceptibilty to fracture
damage, it is likewise beneficial to have the design latitude to pick matching mass
densities. Furthermore, having estimates of bulk material densities and x-ray densities, it
is possible to calculate approximate porosities for the resulting films.

1.4.6 Mohs Scale Hardness

Although hardness and bulk modulus do not completely determine wear resistance, they
are generally rough guides to thin film durability. Therefore, it is likewise beneficial to
have access to these numerical estimates, especially in the context of outer,
environmental layers within multilayer structures.

1.4.7 Index of Refraction

Most thin film device codes require specifications for both refractive index and physical
thickness of the prescribed film cycles. With the resulting database, a continuum of
selections exist for each layer material. Further, the thin film designer has at their
disposal numerous choices for the outer impedance matching layer to the external
environment (i.e., air, vacuum, or water).

1.4.8 Additional Thermodynamics

Complementary thermodynamic attributes to Gibbs standard free energy of formation,
provide consistency checks on their respective values. Heat capacity values may likewise
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prove valuable in minimizing thermal shock to delicate multilayer structures or in heat
dissipation applications. Furthermore, availability of both AH AND AS data, allows the
estimation of the temperature dependence of Standard Free Energy of Formation through
the well known thermodynamic relationship AG = AH - TAS. Hence we may assess the
stability of any potential chemical system over a wide range of temperatures.

1.4.9 Superconducting Critical Temperature

With the widespread interest in thin superconductivity, it may be quite advantageous to
anticipate critical temperatures of single film layers and bulk materials. If models exist,
relating the performance of constituent materials to that of superconducting hetero-
structures, significant benefit will be seen. Further in satellite and spacecraft applications,
it will be useful to have a large repertoire of electronic materials known to be
superconductive within the low background temperatures of prescribed mission
environments.

1.4.10 Magnetic Susceptibility

Thin film magnets are finding diverse applications in areas ranging from highly efficient
supermotors and actuators to the preparation of artificial dielectrics and magnetics for rf,
microwave, and low observables applications.

1.4.11 Electrical Conductivity

Foreknowledge of electrical resistance may prove useful for evaporated traces in VLSI
design. If bulk chemistry is achievable for the proposed chemical species, lower
resistivities may be a major boon to power distribution efforts.

1.4.12 Thermal Conductivity

With the race on in the semiconductor industry for highly thermally conductive substrates
and heat sinks, it will be invaluable to have a compilation of many candidate materials
rivaling diamond in their heat dissipation characteristics.

1.4.13 Coefficient of Thermal Expansion

For alternating thin film structures exposed to significant excursions in thermal
environment, it is highly desirable to minimize strain through the prudent matching of
coefficients of thermal expansion. Furthermore, to design optical components requiring a
high degree of stability, such as the HR stacks forming laser cavity end mirrors, minimal
CTE is desired.

2. Database Generation

The raw data used for the training of the Creativity Machine's imagination engine drew
primarily from (1) The TAPP database, (2) Pearson's Tables, (3) The CRC Handbook,

Imagination Engines, Inc. 14



AF98-190, Integrated Substrate and Thin Film Design Methods

and (4) the text Inorganic Chemistry by Cotton and Wilkinson. Training data for the
CM's hetero-associative modules drew heavily upon CRC Handbooks. Many scattered
literature sources, including those listed in section 7, were also enlisted for this effort.

2.1 Data Processing and Preliminary Procedures in the Construction of the
Creativity Machine

2.1.1 Data Acquisition

Over a period of two years, data has been converted from existing magnetic records and
printed texts. In both cases databases were transferred to MS Excel spreadsheets and
combined to serve as network training exemplars. Within the course of this Phase I effort
a significant fraction of this logging activity consisted of deducing isoelectronic series of
the form AxByCz from the classic texts on inorganic chemistry (i.e., Cotton and
Wilkinson, 1972).

2.1.2 Conversion to Proper Representation

Once the required chemical databases had been converted to the Excel format, VBA
macros were written to convert chemical formulas and data into representations
conducive to neural network training. Many experiments were conducted in an attempt to
optimize network performance via formula representation. In the context of the
imagination engine's large auto-associative map, best results were obtained using an all
binary coded representation wherein individual elements were depicted as a vector
containing binary coded row number (from the periodic table) as well as binary coded
electron populations for ground state valence s, p, d, and f shells (e.g., hydrogen was
encoded as the super-vector, {(0,0,1), (0,1), (0,0,0), (0,0,0,0), (0,0,0,0)}, where the vector
(0,0,1) represents the first period of the periodic table, (0,1) represents a single s-electron,
and subsequent vectors (0,0,0,0) represent empty d and f electron shells.). Stoichiometric
subscripts were likewise binary coded. Similarly, it was found that the most efficient and
economical formula representation for the hetero-associative modules consisted of analog
numbers corresponding to the inert gas cores of each constituent element, along with
decimal representations of valence s, p, d, and f electron populations. Stoichiometries
were encoded as decimal, analog values for these hetero-associative modules (e.g., neon
would be encoded as the vector (2, 2, 6, 0, 0}, indicating a helium core of Z--2, followed
by 2 s, 6 p, 0 d, and 0 f electrons).

2.1.3 Auto-associative Filtering of Training Data

The lumped materials database of over 40,000 chemical exemplars, was used to train a
filtering auto-associative network. The utility of such a network is the ability to detect
outliers and anomalies within a database (Thaler & Conrad, 1998). In retrospect, many of
the data anomalies detected via auto-associative filtering turned out to be nothing more
than typographical errors. Other anomalies that could not be attributed to transcription
error, were retained and were assumed to represent real deviations from overall materials
trends.
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2.1.4 Symmetrization of Training Data

Cumulative experience in training both auto- and hetero-associative networks in the
context of materials properties prediction taught that the ordering of elements applied to
the inputs of the net had a significant impact upon network prediction error. Therefore, if
appropriate precautions were not taken in the preprocessing of the training exemplars,
significantly different calculated properties would result for the formulas AxBy and
ByAx applied to the same trained feedforward network. Therefore, in the case of binary
compounds, the training exemplars were doubled by reversing the elements and
stoichiometries. For ternary systems, the training exemplars were expanded six-fold, by
the inclusion of orders ABC, BCA, CAB, ACB, BAC, and CBA.

2.1.5 Network Optimizations

Hidden layer architectures were optimized in terms of RMS test prediction error. Genetic
algorithms were used to vary layers, hidden units, learning rate, momentum, and
annealing noise toward optimal values that minimized network generalization error.

2.1.6 Conversion to Spreadsheet-Implemented Networks

Rather than rely upon linear programming languages such as C, the neural networks
employed in this study were implemented by 'weaving' together cells within a
spreadsheet application via relative referencing (Thaler, 1996e, 1998ab,c). Such
spreadsheet-implemented networks are transportable and object-oriented so that they may
be rapidly positioned and mated with other neural networks within complex cascade
structures. This capacity to rapidly implement and test such parallel architectures greatly
accelerated the prototyping, testing, and final runs of the materials discovery Creativity
Machine produced in this effort.

2.1.7 Conversion to Active Server Pages

For each neural network implemented as a woven spreadsheet net, a corresponding
VisualBasic Script version was created for integration within an Active Server page
(ASP). These were and are currently being used in a complementary role to the
completed Creativity Machine, in providing numerical estimates of both chemical and
physical properties of elements, and both binary and ternary compounds within and
beyond the bounds of the dynamic database generated by the materials discovery CM.
These networks are available at the joint IEI-AFRL CRDA site at
http://www.imagination-engines.com/storefront/crda.htm.

2.1.8 Connection of Network Modules

Following the training and refinement of each ANN, the corresponding spreadsheet
module was generated and then pasted within an individual spreadsheet of an Excel
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workbook. The network cascade was linked together by threading network inputs and
outputs between the individual worksheets of the Excel workbook (Fig. 6).

2.1.9 Governing Macros

A controlling algorithm was created to drive the CM cascade as well as to govern the
archiving of discovery data. Summarily the algorithm could be placed in either a binary
or ternary system search mode wherein elements A, B, and C (within the ternary search)
were cycled through and then used to pin the element inputs of the IE net as
stoichiometric nodes were stochastically activated. Each new potential chemical formula
was then distributed to all of the hetero-associative properties nets to calculated
anticipated property values.

2.1.10 Conversion to MS Access Database

Both cumulative binary and ternary systems databases were imported from MS Excel to
MS Access to implement SQL queries. Further, this database was connected via an
ODBC model, to the World Wide Web for public access. The HTML interface is located
at http://www.imagination-engines.com/af98-190/password.asp (password entry only).

2.2 Materials Discovery Creativity Machine (MDCM) Architecture
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Figure 5A. Highly schematic diagram of the Materials Discovery Creativity Machine. A
primer net first recommends an approximate stoichiometry. A type III imagination engine
then gravitates toward some exact stoichiometry. A system ofparallel hetero-associative
modules then estimates accompanying physical and chemical properties. I
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The overall architecture of the Materials Discovery Creativity Machine is shown in
Figure 5A. In the first stage of the calculation, the governing algorithm generates the
electron representations of three separate elements, A, B, and C, using the analog
representation. Furthermore, a random number is generated, representing the sum of
stoichiometric indices, x+y+z. the primer net then calculates the most likely distribution
of this sum into stoichiometric indices x, y, and z. If the sum x+y+z does not involve the
sum of plausible stoichiometries, the network outputs settle into the closest achievable
stoichiometry (i.e., for input of A="H" and B="O" and stoichiometric sum=2, this net
would yield stoichiometric outputs of x=2 and y=l, representing H20. Likewise, a
stoichiometric sum of 3 would yield H20, but a sum, x+y+z, of 4 would yield H20 2.)

The formula, represented at the primer net's outputs, is then converted to the full binary
coded representation. These BCD elements and stoichiometries now serve as inputs to the
imagination engine. Within the first recurrent pass through this network, internal synaptic
noise is set at a mean value of 0.06, consistent with the prescription of Equation 1. The
auto-associative IE is then run recurrently, repeatedly circulating outputs back to inputs
(with A, B, and C fixed). With each successive pass through this network, the mean
synaptic noise is modulated by the current delta error between the output and input
vectors. Should this recurrent net stochastically locate a sufficiently deep attractor basin
(representing either a stoichiometric memory, or a generalization of its memories), the
delta error between output and input patterns will converge toward a small number. At
this point, the activation state of the IE stabilizes and there is no further significant
network evolution. Once this network convergence is achieved, the complete formula,
AxByCz, represented at the network's outputs, is now relayed in parallel to the individual
property networks, following conversion back to the analog representations for both
elements and stoichiometries. The governing algorithm then archives the potential
chemical formula, along with accompanying calculated property values.

In this initial effort, the governing algorithm generated compositions consisting of
elements A, B, and C, in alphabetical order with A•B*C. To achieve this end, a series of
three nested FOR loops were constructed within the VBA macro, corresponding to each
of the elements A, B, and C, respectively. The B loop began with the next alphabetical
choice of element symbols following A. Likewise, the C loop began with the next
alphabetical element symbol entry following that of B.

For each combination of elements ABC generated by these nested loops, ten trials were
conducted, experimenting with the stoichiometries x, y, and z. In the early stage s of this
Creativity Machine, stoichiometries were restricted to values less than or equal to 7.
Recursion through the IE net continued until the RMS delta error between inputs and
outputs fell below the predetermined threshold of 0.05

Weaving of the network cascade was achieved by embedding the individual ANN
modules depicted above in Figure 6, into successive worksheets within an Excel
workbook. Relative referencing between individual sheets served as a data bus,
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conveying the calculated formula emerging from the primer and IE nets to the
downstream property nets.

Primer

Imaination Engie4
AxByCz

PeK:T aT MW

Figure SB. Highly schematic diagram of the Materials Discovery Creativity Machine. A4
hypothetical formula of the form AxByCz originates within the primer-imagination engine
stage of the Creativity Machine cascade. Physical and chemical properties are then
estimated in parallel calculations within the fifteen hetero-associative modules and a
single algorithmic macro that calculates exact molecular weight, MW. AG]' is Gibb 's
Free Energy of Formation, q is the charge on hypothetical species, a, b, c, a• • y are
lattice parameters, Tmett is melting point, pm is the mass density, Mohis is Mohs Scale
hardness, no is the sodium D-line refractive index, AHtf° is the standard enthalpy of
formation, AS]' is the standard enthalpy of formation, Tc is the superconducting critical
temperature, Xm is the magnetic susceptibiliy, Pe is electrical resistivity, 1¢T is thermal
conductivity, CXT is coefficient of thermal expansion, and MW is the molecular or formula
weight.
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Figure 6. Implementation of Materials Discovery Creativity Machine within Excel
Workbook. Each worksheet, corresponding to a tabbed layer within the diagram,
contains a single neural network module, knitted by relative reference between individual

spreadsheet cells. Likewise, the individual modules are linked between worksheets via
relative reference. Between the auto-associative 1E and lower hetero-associative nets, the

representation is convertedfromffull BCD to base 10 analog format.
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2.2.1 Primer Network

A three layer net having 16 input, 10 hidden layer, and 18 output nodes was trained upon
roughly 15,000 binary and ternary systems to map inputs consisting of elements A, B, C,
and a total stoichiometry (x+y+z) to identical outputs A, B. C along with the most likely
analog stoichiometric indices, x, y, and z. Essentially, this network was designed to
accelerate the performance of the IE net in seeking its attractor basins by supplying initial
analog estimates of stoichiometry. Because the stoichiometric sum could be
parametrically increased, multiple stoichiometries could be established for any elemental
combination A, B, and C. Thus for A=H, B=O, and C void, an input of x+y+z = 3 to this
net would output x=2, y=l, z=0. Similarly, increasing the input quantity x+y+z to 4
would output the values x=2, y=2, z=0. In other words, the primer net may be thought of
as distributing stoichiometry among the constituent elments of a system A, B, and C. The
additional outputs of elements A, B, and C is a crosscheck as to whether the primer
perceptron is in fact sensing the correct elements at its inputs. Therefore the appearance
of any elements at the outputs, other than the input triplet, would invalidate the
recommended stoichiometric distribution x, y, and z.

The 15,000 chemical systems utilized in training this net were drawn at random from the
combined TAPP database and Pearson's Tables. 20% of this data was reserved for
network testing, wherein RMS prediction error was minimized to approximately 0.1
stoichiometric unit. Following testing, the reserved data was recombined with the training
data and network training resumed until training error likewise reached 0.1 stoichiometric
unit

2.2.2 Imagination Engine

The largest network within the cascade was the auto-associative memory constituting the
imagination engine. Training data for this network consisted of roughly 15,000 entries
from the TAPP database, 16,000 from the Pearson's Tables, 6,000 retrieved from
scattered literature, and approximately 3,000 exemplars 'manually' generated from
Cotton and Wilkinson's (1972) classic text Advanced Inorganic Chemistry. In the case of
the latter source, whole families of chemical systems could be either recovered or
deduced from chapters and sections devoted to related compounds and systems.
Therefore, the spans of isoelectronic series could be established (i.e., Ax By, A'x B'y, are
known to form, but Ax"B"y does not, where A, A', A" possess identical valence shells,
but differing atomic cores).

The representation used for training this network consisted of chemical formulas cast into
entirely binary coded form. Each of the elements was represented by 16 bits, while each
stoichiometric index was indicated through 8 bits. Full compound or system
representation consisted of the elements A, B, and C, followed by the stoichiometries, x,
y, and z. Therefore, the total number of inputs (or outputs) to this auto-associative
network totaled 72. Training was continued until RMS training error fell below 0.1% for
each of the Boolean output nodes.
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2.2.3 Standard Free Energy of Formation Network

A three layer network, consisting of 18 inputs, 11 hidden layer units, and a single output
node, was trained to within 6% rms (- 30 kcal/mole) error for the total free energy range
of the training exemplars, -450 to +50 kcal/mole. Inputs consisted of the electronic
representation of the 3 element compound and accompanying stoichiometries x, y and z.

2.2.4 Partial Charge Network

A three layer feedforward network, having 18 inputs, 15 hidden layer units, and a single
output node, was trained to 3% rms of its total output range of 9 charge units. The
training set consisted of approximately 3,000 exemplars, approximately 800 of which
were known ionic species. The remainder of the training set was made up of known
neutrals borrowed from the 10,000 compounds used for stoichiometry training. Inputs to
the net consisted of the valence shell configurations of each constituent element, A, B,
and C, along with the accompanying x, y, and z stoichiometries.

2.2.5 Lattice Constants Network

Unit cell lengths and bond angles were calculated via a three layer network having 21
input, 60 hidden layer, and 6 output units. Both elemental and stoichiometric inputs to
this network were binary coded. The training set for this net consisted of 5,300 exemplars
randomly selected from TAPP and Pearson databases. RMS testing error for this network
was 10% of the range for each of the lattice constants (approximately 1 Angstrom for
lattice constants and 2 degrees for unit cell angles).

2.2.6 Melting Point Network

This four layer net consisted of 18 input, 29 first hidden layer, 18 second hidden layer,
and 1 output node. 9,000 training exemplars were randomly drawn from the combined
TAPP, CRC, and Pearson databases. 20% of these were randomly selected as a reserved
test set. Test accuracy of this network was reduced to 5% of the range of melting
temperatures of 4000 degrees C, or approximately 200 degrees C. Note that melting point
estimates from this net only become useful at the higher melting points, where an error of
200 degrees C is only a small fraction of the calculated temperature.

2.2.7 Density Network

This three layer network, capable of handling quarternary systems, consisted of 24 inputs,
25 hidden layer units, and a single output representing estimated mass density.
Approximately, 15,000 training exemplars were used, drawn randomly from the
combined TAPP, CRC. and Pearson databases. 20 % of these exemplars were reserved
for test purposes. The overall RMS prediction error for this net was reduced to 5% of the
overall range of density values, 36, for an average error of 1.8 grams per cubic
centimeter.
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2.2.8 Mohs Scale Hardness Network

A three layer network) was trained to within 10% rms error (1 Mohs Scale unit) in
mapping binary compounds to their anticipated Mohs Scale hardness. In all, 339 training
exemplars were used in training this net, chosen largely from minerological references. If
for any given compound within the net's training set, there arose a choice of phase, the
hardest of the room temperature and atmospheric pressure phases was chosen. Therefore,
within this training set, carbon is represented as diamond, and not graphite.

2.2.9 Index of Refraction Network

A four layer network was used to map composition to sodium D-line refractive index.
The net consisted of 18 inputs, 26 first hidden layer, and 19 second hidden layer, and a
single output representing refractive index. A total of 2,800 training exemplars were
collected largely from the CRC Handbook and scattered literature. 20% of these
exemplars were reserved as test data. RMS Test prediction error was minimized to 3% of
the range of available index values, 3.2, for an average error of approximately 0.1.

2.2.10 Thermodynamics Network

Composition was mapped to Gibb's free energy, enthalpy and entropy of formation, as
well as heat capacity at constant pressure via a three layer net having 18 input, 38 hidden
layer, and 4 output notes corresponding to the aforementioned thermodynamic quantities.
A total of 565 training exemplars were collected from the literature (primarily CRC).
20% of this data was reserved for test purposes. Total RMS prediction error was
minimized to 4% of the range of each of these thermodynamic functions, amounting to
approximately 32 kcal/mole for free energy and enthalpy, and 2.8 kcal/mole-degK for
entropy and heat capacity values.

2.2.11 Superconducting Critical Temperature Network

A three layer net consisting of 18 inputs, 32 hidden layer, and a single output, was used to
map composition to approximate superconducting critical temperature. Approximately
4,100 training exemplars were collected from both the CRC Handbook and the NIST
Superconductor Database, 20 % of which were reserved for network testing. Overall
RMS prediction error was minimized to 10% of the overall range of critical temperatures,
21 deg K, for an average prediction error of 2 deg K.

2.2.12 Magnetic Susceptibility Network

A four layer net was used to map composition to magnetic susceptibility in units of IE-6
CGS. The net consisted of 18 input, 30 first hidden layer, 16 second hidden layer, and
two ouput nodes representing first algebraic sign and the base 10 logarithm of the
absolute value of magnetic susceptibility, ym. In total, 3,700 compounds and
corresponding magnetic susceptibilities were gathered from the literature, 20% of which
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were reserved for network testing. Overall RMS prediction error was reduced to 5% of
the overall range of log(zm) , 5.6, for an average error of.28 in log(X.).

2.2.13 Electrical Resistivity

A three layer net was used to map composition to the base 10 logarithm of resistivity, p,
measured in units of Q-m. Approximately 1,000 training exemplars were collected from
diverse literature that included the CRC Handbook. 20% of this data was reserved for
testing. Overall RMS prediction error was minimized to 5% of the range of log(p), 21, for

an average error of approximately 1.05. Therefore, resistivity values were accurate to
within approximately a factor of 10.

2.2.14 Thermal Conductivity Network

A three layer network was used to map composition to thermal conductivity, JCT,

measured in units of mW/cm-K. This net consisted of 18 input, 8 hidden layer, and a
single output node representing thermal conductivity. 1,045 training exemplars were
collected from scattered literature and the CRC Handbook. 20% of these exemplars were
reserved for testing purposes. The final RMS prediction error attained was 6.5% of the
range of thermal conductivity values trained upon, 4.6, yielding an average prediction
error of 0.3 mW/cm-K.

2.2.15 Coefficient of Thermal Expansion Network

Coefficient of thermal expansion, ot, in units of IE-6/degK, was calculated using a three
layer net having 18 inputs, 10 hidden layer, and a single output node representing
coefficient of thermal expansion. A total of 600 training exemplars were collected from
diverse literature and the CRC Handbook. 20% of these exemplars were reserved for
network testing purposes. Ultimately, RMS test error was minimized to 5% of the total
range of CTE values within the training database, 76, yielding an average prediction error
of 3.8 E-6 / degK.

2.3 Materials Discovery Creativity Machine (MDCM) Runs

Preliminary to the final run of the completed Materials Discovery Creativity Machine
(MDCM), multiple investigations were carried out using only the imagination engine to
examine the plausibility of the resulting chemical compositions. The conclusion of this
study was that whereas each compound generated by the IE had precedence in terms of
its valence shell configuration, not all materials proposed were likely. That is, each
hypothetical compound produced by the imagination engine was isoelectronic with some
material already encountered among the training exemplars. Therefore, the realizability
of each of these chemical systems was plausible only within the context of the
concurrently calculated standard Gibb's free energy of formation. Furthermore, any
stoichiometric series AxByCz (where A, B, and C are fixed and x, y, and z vary) ranked
in ascending order of free energy of formation, showed the most commonly encountered
stoichiometries invariably near the top of the list. However, some not so well known
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stoichiometries also appeared among the thermodynamically stable candidates, indicating
either (1) flaws in the overall system, (2) potentially stable, yet heretofore kinetically
inaccessible species that could be achievable via advanced thin film techniques, or (3)
mixed stoichiometries, solid solutions, or interstitial substitutions.

Example stoichiometries recovered from an early test run of the imagination engine are
shown for the specific cases of both vanadium and iron oxides, as well as for sodium
chloride in Table 1. In each of these cases, the stoichiometric combinations discovered by
the IE are ranked by calculated Gibb's free energy of formation, from most to least
stable. In these cases, and many more studied, the known stoichiometries tend to populate
the upper portions of these ordered tabulations. The other proposed materials may require
explanation, either as artifacts of the calculation, or kinetically inaccessible. In the case of
the oxides, for instance, thin film growth may allow the formation of sub- and super-
oxides, depending upon the oxygen background pressures used. Therefore, we can expect
a wide variation in thin film oxide stoichiometries manifesting stability.

The variety in the sodium chlorides may require chemical explanation in terms of other
known quasi-stable Na.Cly stoichiometries that include charge transfer complexes as well
as heavy chloride diffusion into NaCl at elevated temperatures that results in F-center
defect production. The multiple entries Na.Clx are interpreted as variations on the
formula NaCl induced by variations in formula and unit cell conventions within the
databases mined for neural network training exemplars.

One feature of the imagination engine studied at great lengths, was the frequency with
which this network generated various stoichiometries x, y, and z, for fixed elemental
composition A, B, and C. These frequency were in turn indicative of the depths of the
attractor basins representing these stoichiometries. One case in point is the plot of Figure
7, where first the raw frequency of the FeOy stoichiometries is shown, alongside a
similar plot wherein each frequency is modulated by the simultaneously calculated
standard free energy of formation. We see that in the latter, the attractor landscape clearly
yields the known iron oxide stoichiometies of FeO, Fe2O3, and Fe3O4. The iron-enriched
species FesO4 is puzzling and may require further explanation.

Certainly, these frequencies would be necessary to the most thorough tabulation of
stoichiometries. However, since a single pass through all elemental combinations requires
days of CPU time, such a study would require months to complete. In the meantime, at
least a portion of the novel stoichiometries could be no more than spurious, shallow
attractor basins of the network.

Based upon theses observations, we may relaibly state that the stoichiometries predicted
by the imagination may be viewed as probabilistically correct. Those chemical formulas
generated by the imagination engine having large negative free energies of formation are
very likely to represent plausible chemical systems. To thoroughly assess plausibility,
many thousand iterations would be needed for a given composition A, B, and C, varying
x, y, and z to establish the relative depths of the attractor basins involved.
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Table 1. Example Stoichiometries from the Imagination Engine

1E Known AGf IE Known AGf IE Known AGf
V203 yes -547.1 Fe405 -544.3 NaC12 -540.5
V507 -546.9 Fe506 -544.3 Na3CI4 -525.3
V407 -546.8 FeO yes -543.8 NaSCI5 yes -503.1
V02 yes -545.8 Fe607 -543.3 Na6CI6 yes -446.7
V607 -542.2 Fe305 -542.6 Na7CI2 -339.9
V03 yes -535.4 Fe203 yes -542.2 NaCI4 -263.7
V207 -533.9 Fe705 -536.6 Na2Cl2 yes -141.1
VO yes -533.5 Fe3O4 yes -535.4 NaCI yes -83.1
V205 yes -520.6 FeO2 -531.1

V70 -344.7 FeO4 -363.2

V50 -135.0 Fe6O -42.1
V302 -79.7 Fe2O -37.7
V20 -19.0 Fe3O -21.2
V40 +4.7 Fe50 -18.8
V30 +20.5 Fe40 1-15.3 Na4CI -12.5

5

3 ....... ....L.. ..... .... .. ............. .............. ...... ..... ........... .. .......... ..... ... ...... .... ...
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Figure 7. Attractor Basin Lanscape of the Imagination Engine for the Iron Oxides.
Closed contours represent minima.
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2.3.1 Binary Systems

In the first run of the complete materials discovery Creativity Machine, the binary
systems AxBy were surveyed. To contact with existing literature, the stoichiometries x
and y were restricted to values less than or equal to 7. Approximately 70,000 chemical
systems and accompanying properties were amassed within 24 hours using a Pentium II
processor running at 200 MHz. This Excel database was then converted into an Access
database in preparation for making it accessible to queries via the internet.

2.3.2 Ternary Systems

In the second run of the materials discovery Creativity Machine, a survey was made of
ternary systems AxByCz, again pinning the stoichiometries x, y, and z to values less than
or equal to 7. Following 72 hours of sustained parallel runs on two Pentium H processors,
a total of approximately 160,000 ternary systems and their accompanying properties were
archived within an Excel database. This data was then converted into an Access database
in preparation for internet queries.

3. The Resulting Database

Using the Database - The materials database generated by the Creativity Machine are
accessible through an html interface that supports standard query language (SQL). The
password gateway to this interface is at http://www.imagination-engines.com/af98-
190/password.asp (i.e, passwords are obtained on a membership basis, to obtain a
password contact sthaler@)x.netcom.com). Because an operator may intersect regimes of
multiple materials properties, this database, coined the "MatterHorn" forms an effective
materials design tool that may be used to fulfill broad materials specifications. Therefore,
it is possible, for example, to interrogate either binary or ternary databases for materials
having a superconducting critical tempertaure above 20 deg K, while also manifesting a
Knoop Hardness of in excess of 9.0, ordering by Tc, etc.

As elaborated upon in section 2.3, this database is to be used in a probabilistic sense,
evaluating the plausibility of any proposed stoichiometry in terms of the projected free
energy of formation. Further, materials properties estimates are to be regarded as only
approximations and not precise values gleaned through meticulous laboratory procedures.
Nevertheless, this database does represent a broad brushstroke survey of all binary and
ternary chemistry. Furthermore, it is a chemical compendium that is based largely upon
composition, considering in the majority of its records, the physical and chemical
properties of an 'average' phase of any given stoichiometry AxByCz.

3.1 Use of the MatterHorn Database

Both of the MatterHorn databases (binary and ternary systems) consist of the same
materials properties headers, corresponding to the symbols shown in Table 2. All
quantities defined there should be self-evident to the materials scientist, with the
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exception of the delta column, corresponding to the convergence error (final difference of
the IE's input and output patterns). This quantity is included as a diagnostic check that
the imagination engines did indeed relax into a network attractor basin and that the
stiochiometry is not the result of some unforeseen computational pathology.

Table 2. Attributes incorporated into the MatterHorn Database

HEADER MEANING UNITS
DELTA RESIDUAL INPUT-OUTPUT dimensionless

ERROR IN EE NETWORK
A, B, C ELEMENT SYMBOLS text
x, y, z RESPECTIVE dimensionless

STOICHIOMETRIC INDICES
FOR A, B, & C

MW MOLECULAR OR FORMULA grams
WEIGHT

DGF =AG STANDARD GIBBS FREE kcal/mole at 25 deg C
ENERGY OF FORMATION

CHG PARTIAL CHARGE ON electron charge
HYPOTHETICAL
CPD/SYSTEM

CELL ABC LATICE CONSTANTS Angstroms
CELL ALPHA, BETA, GAMMA UNIT CELL ANGLES degrees
MP MELTING POINT deg K
DENS DENSITY zrams/cmA3
MOHS MOHS SCALE HARDNESS dimensionless
INDEX INDEX OF REFRACTION dimensionless
DH = AH ENTHALPY OF FORMATION kcal/mole at 25 deg C
S ENTROPY OF FORMATION cal/deg-mole at 25 deg C
CP = Cp HEAT CAPACITY AT cal/deg-mole at 25 deg C

CONSTANT PRESSURE
TC = Tc SUPERCONDUCTING deg K

CRITICAL TEMPERATURE
CHI MAGNETIC SUSCEPTIBILITY 10E-6 CGS
RHO ELECTRICAL ohm-m

CONDUCTIVITY
TCON THERMAL CONDUCTIVITY mW/cm-K at 300 deg K
CTE COEFFICIENT OF THERMAL 10E-6 /deg K at 300 deg K

EXPANSION

To query this database, use standard SQL commands of the form,

Select * from [database] WHERE [logical clause] ORDER BY [some criterion].

Once a databse is selected using the binary or ternary buttons, the base command Select *

from [database] is automatically generated within the text area field of the html form.
Simply add the required clause(s) to this query root.

Below are listed some example queries that may be executed against these respective
databases:
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Select * from BINARIES WHERE A-AI' AND B-0'
Select * from BINARIES WHERE TC>20 AND RHO>1000
Select * from BINARIES WHERE INDEX>3 ORDER BY INDEX
Select * from BINARIES WHERE CHI>50000 AND DENS>15
Select * from BINARIES WHERE TC>19 ORDER BY TC
Select * from BINARIES WHERE MOHS>9.5 AND DENS<5
Select * from TERNARIES WHERE A-'AIr AND B=-O' AND C-=Si ORDER BY RHO
Select * from TERNARIES WHERE TC>20 AND RHO>1000
Select * from TERNARIES WHERE INDEX>3 ORDER BY INDEX
Select * from TERNARIES WHERE CHI>50000 AND DENS>15
Select * from TERNARIES WHERE TC>19 ORDER BY TC
Select * from TERNARIES WHERE MOHS>9.5 AND DENS<5

In performing queries of both the binary and ternary databases, it is important to
remember that the current version of the underlying active server script can only deal
with compositions ABC, where A, B, and C appear in alphabetical order. Therefore a
query of the form, Select * from TERNARIES WHERE A='V' AND B='Nb' AND
C='O' would return no results, since the constituent elements have not been entered in
the correct ascending order. The correct sequence for this query would read Select *

from TERNARIES WHERE A='Nb' AND B='O' AND C='V'.

Likewise, it is cautioned that bandwidth limitations imposed by the internet, prohibit
large samplings of the MatterHorn database. It is therefore advised that enough
restrictions be placed on the query so as to limit the potential number of hits. Otherwise,
the server script will time out after approximately two minutes, followed by the
corresponding error message. Therefore, for intensive queries of the SBIR database, it is
recommended that the MS ACCESS database be directly interrogated.

Furthermore, as discussed below, it is likewise recommended that the user stipulate an
ordering by the standard Gibb's free energy of formation (DGF) to rank the resulting
query results in terms of thermodynamic plausibility. In this case, the query would be
appended with a clause of the form ... ORDER BY DGF.

Figures 8 and 9 show successive stages of the on-line query. Presuming that a database
member has successfully logged-in, they are presented with a text area form for the entry
of their query. The html interface is initialized in the binary system search mode, but may
be placed in the ternary search mode (Figure 8) through the button marked new ternary
query. The user may return to the binary search mode by pushing the new binary search
button, at any time.

The query stem is automatically generated within the text area form element and will read
either (1) Select * from BINARIES or (2) Select * from TERNARIES, depending
upon the search mode. The user must add the correct clause to this stem, typically
beginning with the word WHERE, followed by the search constraints. Note that the
query has been preserved at the SQL level to afford the user the greatest flexibility in
searching these discovery databases. Once the query line is completed, the user pushes
the Submit Query button. It is highly recommended that the display window be enlarged
beyond 640 pixels to accommodate the wide tables used to display query results (Figure
9).
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Figure 8. HTML Interfiace to the MWatterHorn Database. Queries are entered into the text area form in
standard queryv language. The submit button launches the database query.
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4. Conclusions

4.1 Neural Network Methodology

The guiding philosophy behind the materials discovery Creativity Machine constructed as
part of this Phase I SBIR effort mirrors nature, in that once a combination of elements A,
B, and C are specified, the possible ranges of allowable stoichiometries fall within a
discrete manifold of possibilities. In turn, these resulting compositions AxByCz then
restrict the kinds of potential phases accessible. Considering phase to be a function of
stoichiometry, approximate physical and chemical properties may be estimated and
associated with any given formula AxByCz. Final analysis of the prediction accuracy
offered by the downstream hetero-associative property modules reveals that the
calculation error of these nets typically is not sufficiently small enough to resolve the
spread in property values between separate phases of any given composition.
Nevertheless, the coarse survey of all binary and ternary chemistry offered by this
materials discovery Creativity Machine is unprecedented in its scope, potentially offering
a boon to both thin-film and bulk materials discovery efforts.

Further, in overview, the computational materials search accomplished during this study
minimally has value as a broad survey of how materials properties vary as a function of
elemental substitution, A, B, and C. Optimally, however, the machine-manufactured
databases produced offer an accurate prediction of potential stoichiometries, AxByCz,
and phases delivering a wide range of technologically useful characteristics. Perhaps the
reality lies somewhere between these two extremes.

Weaknesses in the methodology that have detracted from the overall accuracy of this
discovery system, include:

(1) The wide variations an inherent errors that exist within the historical materials
databases - Oftentimes different sources quote widely varying property values for a
given composition and phase. These discrepancies certainly point to some degree of
error within the empirical materials property measurements and most assuredly
impact the accuracy of the neural network fit to that data.

(2) Sparseness of data - Needless to say, the literature contains vast gaps in materials
properties data, for a variety of reasons. In many cases materials have been difficult
or dangerous to synthesize (i.e., those containing radioactive isotopes). In other cases,
either the lack of commercial utility or natural abundance has dissuaded materials
characterization. However, in many cases, the shear number of combinatorial
possibilities (i.e., the inter-metallics) alone, has left myriad elemental blends
unexplored.

(3) Limitations of computational resources - As pointed out above, the plausibility of
any given stoichiometry is determined by the frequency with which that composition
is visited by the imagination engine (i.e., the depth of the IE's attractor basins).
Therefore, it is necessary to carry out thousands of experiments with any given
composition ABC to establish the most likely distribution in stoichiometries x, y, and
z. such runs would require months worth of CPU time on Pentium II class processors
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and weeks on more powerful computational platforms such as Cray supercomputers.
In this study, only ten possibilities for any given composition ABC were explored
within each 3 day run of the Creativity Machine.

Nevertheless, the Creativity Machine Paradigm enjoys an adaptability that other
discovery techniques totally lack, the ability to learn from its own mistakes. Therefore,
we envision subsequent stages in this effort to test many of these materials predictions in
the laboratory and to progressively improve on the accuracy of the Machine.
Stoichiometries and properties manifesting significant error will be appended to the
existing training exemplars and absorbed into any subsequent training of the component
neural network modules.

4.2 Materials Discoveries

Potential Materials Discovery Having Technological Utility

In a preliminary exercise of the MatterHorn database, materials projected to possess
exceptionally high or low values of the calculated properties are enumerated below. Of
course the tabulations that follow do not exercise the full potential of the resulting
materials discovery database to identify materials falling within intersecting properties
regimes or families (i.e., substances having Tc above 20 deg K and Mohs Scale hardness
above 9.5). Nevertheless, the following materials discoveries reveal compositions and
stoichiometries that may exceed the known champions.

4.2.1 Refractory Materials

Ultra-Refractory Binaries - Compositions of the form RexHy, RexLiy, and LixWy show
predicted melting points in excess of 4100 degrees C. The most refractory materials
proposed by the CM include the entries shown in Table 3. Many of these materials, if
shown to be viable, could find niche applications in the aerospace and nuclear fusion
arenas. Materials projected to be especially stable, such as ResH 2, could be produced by a
variety of techniques that include pulsed laser deposition, ion-implantation, or possible in
situ implantation within nuclear radiation environments.

Table 3. Most Refractory Binary Systems

System MP (deg K) AGjQ (kealmole)

Re2H 4145 -41.3
Re3H 4144 -67.4
Re5H 4139 -110.3
Re6H 4136 -70.8
ReH2 4135 -26.6
Re2Li 4132 -41.3
Re3Li 4129 -66.0
Re5H2 4127 -369.3
ReSLi 4123 -105.5
ReLi2 4120 -26.3
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Ultra-Refractory Ternaries - Some of the most refractory ternary systems discovered by
the CM are listed in Table 4. All of these compositions appear to be thermodynamically
stable. Synthesis routes for such ternary systems could include pulsed laser deposition, e-
beam, or possible 'crucible chemistry' routes.

Table 4. Most Refractory Ternary Systems

System MP (deg K) AGf° (kcal/moie)

B1K6W2 4160 -550.0
AI1Li7Ta2 4159 -550.0
Cm3Li2Mg 4151 -549.8

H6Li5Ta 4146 -550.0
CmlLi4Mg 4139 -549.9
K4Li2Lu 4127 -550.0
H7LiTa 4125 -550.0

Cm2Li6Mg 4121 -549.9
Cm.LiSMg2 4113 -549.8
Ba4He2Tml 4094 -550.0

4.2.2 High Density Materials

High mass density films may be used to provide effective shielding for other systems
within ionizing radiation environments. Satellite, medical, and weaponry systems could
greatly benefit. Such materials could also be utilized in light weight armor schemes to
protect against kinetic energy weaponry or to serve as replacements for the highly toxic
inertial content of hyper-kinetic, armor-piercing projectiles.

One very likely route to the production of materials such as Pt5Xe2 (Table 5) would be
ion-implantation of preexisting Pt thin films.

Table 5. Highest Density Binaries

System DENSITY (Grams/cmA3) AGf° (kcal/mole)

Pd7Xe 36.1 -12.3
Pd6Xe6 36.1 -260
Pd6Xe7 36.1 -258.5
Pd2Xe5 35.5 -152.5

Fr2Pt 31.4 -195.3
PtSXe2 31.4 -294.8
Cd5H 30.6 -304.4
Fr5Pt3 30.6 -480.9
PaPt4 30.5 -307.2

Pd7Po2 29.3 +4.6

Synthesis routes to ultra-mass-dense ternaries could include e-beam, as well as pulsed
laser deposition. Hydrogenation could be achieved via ion-implantation or growth within
high background pressure H 2 environments.
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Table 6. Highest Density Ternaries

System DENSITY (Grams/cm^3) AGf° (kcal/mole)

Ba6H3Pt6 35.8 -550.0
Am2PtSi3 35.7 -549.2
CmPd2Sr2 35.7 -549.6
Cm7PdSr7 35.7 -549.9

Cm5Pd3Sr2 35.6 -549.8
PaPd4Tc7 35.5 -549.6

Cm5Pd5Sr2 35.4 -550.0
Ba5H5Pt2 35.4 -550.0
Fr7_-I3Pt 35.4 -550.0

Am5Pd3Sr3 35.4 -549.5

4.2.3 Ultra-Hard Materials

A casual perusal of Table 7 reveals the usual preponderance of both carbides and borides
among the known ultra-hard materials. The interpretation of such materials is that of
native cubic carbon or boron lattices dressed with interstitial impurities, typically of large
atomic radius (Thaler, 1998). Some of these materials may be accessible via ion-
implantation of heavy ions into either diamond or boron. In the case of diamond,
implantation would be along the [110] direction of diamond. Furthermore, Laser
Absorption Wave Deposition (LAWD, Thaler, 1993), could likewise be used on heavy
metal laser ablation targets such as radium or thorium, or uranium to achieve the required
ion-implantation energies. The resulting dressed diamond lattices could deliver the trans-
diamond hardnesses through the stiffening of the native diamond lattice, provided
graphitization is minimal.

Table 7. Ultra-Hard Binaries

System HARDNESS (Mobs Scale) AGf° (kcal/mole)

C7Ra6 >9.9 -545.9
B5Th6 >9.9 -534.5
B7Pa7 >9.9 -541.7
B5Th7 >9.9 -533.1
B5Fr5 >9.9 -534.5
C6U5 >9.9 -544.0
Pa2Tl6 >9.9 -94.1
B6U7 >9.9 -540.6
B7U6 >9.9 -537.3

Th3TI5 >9.9 -374.8

Synthesis routes for the potential ultra-hard ternaries listed below could proceed by e-
beam, crucible chemistry, or pulsed laser deposition.

(Note that in considering the entries of Tables 7 and 8, the anticipated Mohs Scale
accuracy is ± 1 Mobs Scale unit.)
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Table 8. Ultra-Hard Ternaries

System HARDNESS (Mohs Scale) AGf? (kcal/mole)

AIH4Yb >9.9 -550.0
BHe7Yb4 >9.9 -550.0
C3Li7Lu2 >9.9 -550.0
C2Na3Yb2 >9.9 -550.0

BH6Hf7 >9.9 -550.0
He3Mn4S >9.9 -549.3
C2Na4Yb4 >9.9 -550.0
Ge6LiYb7 >9.9 -549.9
CLi3Ta3 >9.9 -550.0
B6Ce5S3 >9.9 -549.4

4.2.4 Highly Refractive Materials

The ultra-refractive materials discoveries listed below, in Tables 9 and 10, could have

potential utility in waveguide, optical fiber, and integrated optics applications. Both
binary and ternary materials may be feasible through e-beam or pulsed laser deposition
techniques.

Table 9. Highly Refractive Binaries

System nD AGo (kcal/mole)

Au2Hg3 >4.2 -23.7
Au2Hg4 >4.2 -28.0
Au6i-g >4.2 -85.1
AuGe2 >4.2 +7.6
AuHg5 >4.2 +33.1

Au4Hg4 >4.2 -371.8
OsPb >4.2 -17.5
Ir2Sn >4.2 -15.7
HgSn >4.2 -4.5
Ir2Pb >4.2 -1.7

Table 10. Highly Refractive Ternaries

System nD AG? (kcal/mole)

CdPbSm >4.2 -549.6
Mn2Sn2U4 >4.2 -549.7
RaTe5U6 >4.2 -549.7

Mn3Sb2U4 >4.2 -549.8
Mn3Sn2U2 >4.2 -549.8
In4PbPu4 >4.2 -549.9
Cr2NiU6 >4.2 -549.7
SnTcTh4 >4.2 -549.6

Nb5TeYb7 >4.2 -549.7
Ra7Te4U7 >4.2 -550.0
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4.2.5 High-Temperature Superconductors

While not approaching the superconductive characteristics of the YBCOs, many binary
and ternary compositions are promising relatively high critical temperatures, well above
20 degrees K (Tables 11 & 12). High energy argon-implantation of sodium, might be an
inroad to the synthesis of such materials, which could be utilized in satellite and
spacecraft applications.

Table 11. High Temperature Binary Superconductors (interpreted as interstitial
solutions)

System Te (dqoK) AGfo (keal/mole)

Ar7H7 >21.3 -370.0
Ar7H6 >21.2 -448.1
Ar6H4 >21.0 -527.7
Ar7H2 >20.9 -486.1
Ar5Na6 >20.9 -413.7
Ar6Na3 >20.9 -537.6
Ar3Na5 >20.8 -391.5
Ar5H4 >20.8 -506.3
Ar6Na2 >20.8 -508.6
Ar6H2 >20.8 -419.2

Table 12. High Temperature Ternay Superconductors

System Tc *00 AGf° (kcal/mole)

C17HeMg >21.4 -546.9
F7HeMg3 >21.2 -544.9

SSeSi2 >21.0 -547.9
F6HeMg4 >21.0 -546.8

Ar7He3Mg3 >20.9 -548.5
B3BeC3 >20.9 -546.7

Ar6BMg2 >20.9 -546.1
NNaSi5 >20.9 -546.4

Ar5HeMg2 >20.9 -548.5
C16H6Li2 >20.9 -521.7

4.2.6 Highly Magnetic Susceptibility

The availability of extremely high magnetic susceptibility materials could have a
profound effect upon a variety of industries that depend on high magnetic moment: (1)
super-motors, (2) generators, (3) transformers, (4) radar-absorbing materials and
structures, etc. Particularly exciting is the possibility of producing super-magnetic
materials that circumvent the need for costly rare-earth constituents such as lanthanum
(i.e., the high price of lanthanum in rare-earth iron boride supermagnets represents a
prohibitive barrier in the economics of such devices). Therefore Fe7Ne7 and Cr 3Ne5,
(Table 13) potentially synthesized through ion-implantation of neon, into iron, or pulsed
laser deposition, could offer single domain films that could be sandwiched into ultra-
magnetic structures.
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Table 13. High Magnetic Susceptibility Binary Systems

System Xmag3E 6 CGS) AGf° (kcalmole)

Fe7Ne7 578,000 -539.3
Ar3Yb 345,000 -455.4
C13Yb 344,000 -429.5

Fe7Ne6 333,000 -536.6
Ne4Yb 332,000 -488.0
Cr4Ne4 320,000 -521.4
Mn7Ne5 318,000 -530.2
Ar2Yb 311,000 -406.5
H7He6 308,000 -514.5
Cr3Ne5 303.000 -516.0

Table 14. High Magnetic Susceptibility Ternary Systems

System XmagE- ICGS) AGf° (kcal/mole)

C6Hf317 1,124,000 -549.2
C6Lu3Se5 1,063,000 -549.0
C7Lu3Te5 1,035,000 -549.5
CI7Dy5Se5 1,005,000 -549

C7Er517 981,000 -549.4
CI6Lu7Sn5 947,000 -549.5

C5Er616 925,000 -549.5
O7Sm7Te4 905,000 -549.5
H5Lu6Se6 903,000 -549.6
O6Sm7Te7 892,000 -549.5

4.2.7 High Electrical Conductivity Materials

If not superconductive, the following CM-theoretized systems (Tables 15 & 16) could
offer negligible resistance to electrical current at room temperature. Since most of the
constituent elements of the binary systems (e.g., Ac and Pt) are rare or costly, they could
offer utility within microcircuitry. In contrast, it appears as though a number of ternary
systems could offer the batch chemistry needed for large scale power tansmission (i.e.,
A17Be2C).

Table 15. High Electrical Conductivity Binary Systems

System p(a-m) AGf° (kcal/mole)

Bi2He 2.38E-9 +30.7
Ac5Pt5 2.39E-9 -483.6
Ac6Pt 2AOE-9 -350.6
Ac6Pt5 2.41E-9 -498.1
Ac3Pt4 2.41E-9 -472.8
Bi3He 2.42E-9 +18.0
Ac5Pt 2A3E-9 -306.8
AcPt7 2.44E-9 -68.9
LaOPt3 2A6E-9 -482.4
Ba7Pt3 2.50E-9 -497.2
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Table 16. High Electrical Conductivity Ternary Systems

System p(O-m) AGf° (kcal/mole)

Hf5Pd6Se2 8.24E-10 -550.0
B6Be6He3 8.30E-10 -520.8
Pu2Rb6Se4 8.94E-10 -549.3
Pu5Rb6Se6 9.20E-10 -549.5

Am4Na3Te2 9.30E-10 -549.9
B6Be5C 9.33E-10 -548.8
AI7Be2C 9.33E-10 -545.9

C5Ca6He2 9.42E-10 -504.9
B6He3Mg 9A7E-10 -549.6
Pu3Rb4Se 9.86E-10 -548.6

4.2.8 High Thermal Conductivity Systems

With the many frustrated attempts by industry to achieve diamond heat-sinking of
microelectronics, the advent of alternative materials rivaling the thermal conductivity of
that material (O(lOE+3-1OE+4 W/m-K)) could be a welcome development.. Below are
listed several binary and ternary alternatives (Tables 17 & 18) drawn from the
MatterHorn database. The presumed inert gas dressed boron and aluminum lattices could
be achieved through ion-implantation, whereas much larger yield intermetallics such as
Pt7Rh4 and the range of ternary systems recommended could be achieved through batch
chemical routes.

Table 17 High Thermal Conductivity Binary Systems

System aT (mW/cm-K) AGf (kca[/mole)

BNe 4.2E+4 -127.2
AINe 4.1E+4 -127.8
BKr 4.IE+4 -37.5
Wkr 3.9E+4 +37.1

AsBr 3.OE+4 +5.7
AsO 3.OE+4 -49.1

Cr4Mg 2.9E+4 -36.2
Pd7Re 2.9E+4 -159.6
Pd7Rh 2.8E+4 -379.0
Pt7RM 2.8E+4 -414.2

While the substituted inert gas systems, such as BNe appear difficult, if not costly to
produce via implantation techniques, it appears that several batch chemistry candidates
are likely and economical. These latter systems include AsBr, AsO, Cr4Mg, or small
stoichiometric variations upon these compositions.

Within the projected ternaries, Cu7HTi , or a related composition, likewise promises to be
a cost-effective batch chemistry candidate.
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Table 18. High Thermal Conductivity Ternary Systems

System aT (mW/crn-K) AGf° (kcal/mole)

Pt7RhSc 2.9E+4 -549.5
Pd7ScZr 2.9E+4 -549.7
Pd7PrTi 2.9E+4 -546.4
Pd7ScU 2.9E+4 -550.0
Pd5VYb 2.9E+4 -549.7
Pt7RbSi3 2.9E+4 -548.5
Pd7TaYb2 2.9E+4 -550.0

Cu7HTi 2.9E+4 -549.0
Pt6TiZr3 2.9E+4 -550.0
Pt6SiYb2 2.9E+4 -550.0

4.2.9 Low Coefficient of Thermal Expansion Systems

Highly stable optical resonantors and lasers could be fabricated from low CTE materials,
such as those proposed below. With negligable CTE, many of the ternary systems Tables
19 &20) could form the basis of temperature resistant length standards.

Table 19. Low Coefficient of Thermal Expansion Binary Systems

System CTE(1E-6/degK) AGf° (kcal/mole)

Au5Zr7 0.0 -39.3
CI2Tc 0.0 -180.2

Li5Os7 0.0 -447.8
PrSe 0.0 -42.4

Pt7Pu5 0.0 -398.8
La2Ne2 -0.1 -212.2

CISr -0.1 -138.2
At2Br6 -0.1 +0.6
CI3T12 -0.1 -235.4
Ar3Os2 -0.1 -367.9

Table 20. Low Coefficient of Thermal Expansion Ternary Systems

System CTE(1E-6/degK) AGf? (kcaimole)

Ar4 13S5 0.0 -322.8
Br2La4Te 0.0 -542.8
Cu3Kr2S7 0.0 -452.9

As3Br2Te6 0.0 -510.3
NS2Sr4 0.0 -550.0

Al O2Sb5 0.0 -550.0
La4QlTe2 0.0 -549.8
N3SeTc2 0.0 -549.7
Ar5Ce4F 0.0 -540.0

He3Pd6Pt7 0.0 -550.0
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4.3 Schema Analysis

One major advantage of having created such a large theoretical database of materials and
accompanying properties is its breadth and completeness. In vivid contrast with more
exacting, traditional databases that tabulate scattered materials and measurements, to
great exactitude, the Matterhorn is complete and capable of revealing trends that would
have been difficult to discern with the relatively sparse, empirical data. Therefore, it is
possible to seek myriad relationships by experimenting with the various observables
captured within the MatterHorn tabulation, in what might very likely be coined "virtual
empiricism."

One example of this process may be seen in a previous materials discovery effort (Thaler,
1998) in which approximately 20,000 hypothetical binary systems were amassed, using
the CM paradigm, along with anticipated Molhs Scale hardness, free energy of formation,
and lattice constants. Using these estimated values, hardness was plotted versus free
energy density, to reveal generalized trend lines that that obeyed the very case specific
(i.e., tetrahedrally bonded semiconductors) Van Vechten Equation (Phillips, 1973). As
predicted by that relationship, hardness and bulk modulus scaled as the lattice energy
density and hence approximately as the inverse cube of inter-atomic spacings. In the case
of the tetrahedrally bound semiconductors, just a few data points had been fit to the
theoretical equation. However, in the latter instance, 4,000 neural network projected data
points had been thusly plotted to reveal whole families of 1/rA3 correlations with
hardness, each determined by the covalent versus ionic nature of their bonding schemes.
The lesson learned there was that even with the inevitable trade-off in accuracy, patterns
are captured with sufficient precision that major trends, heretofore unobserved, may be
gleaned from voluminous data one generation removed from direct measurement.

In a similar exercise of the newly generated ternary systems database, 32,000
hypothetical systems were used to create an auto-associative map among all of the
projected materials properties tabulated within the MatterHorn database. Then, using a
network skeletonization process introduced in the same 1998 paper, prune away the less
significant connection weights from that net to reveal not only the most strongly
correlated and perhaps causal factors, but to also expose key schema (i.e., how these
factors conspire through hidden layer nodes to functionally determine each network
output.

In Figures 1 OA-E that follow, the full auto-associative properties net was pruned, starting
at the output node of interest, working back through the hidden layer, and then to the
input layer, graphically deleting connection weights whose absolute value fell below 1.5.
The surviving weights were color coded to show their relative significance to the overall
mapping, with red representing values above 3, yellow, those between 2.5 and 3, green
representing those between 2 and 2.5, light blue those between 2.5 and 2, and dark blue
those values below 2.

The high level interpretation of each of these network skeletons may represent a technical
paper on its own. However, I will quickly comment on just a couple examples to
demonstrate how the revealed schema may connected to our current understanding of
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Figure 10A. Schema Analysis Via Network Skeletonization. Exposed connection traces yields factor
analysis and the underlying schema connecting fundamental materials properties.
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Figure 1 OD. Schema Analysis Via Network Skeletonization. Exposed connection traces yields factor
analysis and the underlying schema connecting fundamental materials properties.
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Figure 10E. Schema Analysis Via Network Skeletonization. Exposed connection traces yields factor
analysis and the underlying schema connecting fundamental materials properties.
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materials science.

Casual perusal of the skeletonization performed on the refractive index output (Figure
1 OC) reveals the major input factors to be free energy, lattice constants, electrical
resistivity, magnetic susceptibility, and melting point. Viewing the refractive index as the
sum over various atomic response functions, that primarily include interatomic potentials,
we may rationalize the role of free energy (i.e., lattice energy) or melting point in
functionally determining a primary component of the solid's oscillatory response
function. We also note that free energy and lattice constants (that together determine
interatomic spring constants) interact through an intermediate network node. Secondary
factors include the response of electron plasma and magnetic dipoles through the
resistivity and magnetic susceptibility, respectively.

Inspection of the thermal conductivity skeletonization shown in Figure 10D, implicates
free energy and lattice constants being causal to this property. This schema would seem
reasonable in that these properties conspire to determine interatomic potentials, as well as
Brillouin zone characteristics. It is the flatness of the density of states, within this
reciprocal space view, that in turn determines thermal conductivity.

The magnetic susceptibility skeletonization (not displayed) showed no significant
connection traces between the input and output layers of the auto-associative map. This
observation may corroborate the fact that highly magnetic materials consist typically of
one paramagnetic atomic species, effectively supported within a diamagnetic host lattice.
The latter host has little interaction with the former para- or ferromagnetic sub-lattice.

In short, we may repeat the analysis for each of the network skeletons of Figure 10, to not
only corroborate much of what we know about the atomistic interpretation of materials
behavior, but to fathom new and unforeseen relationships and causalities.

4.4 Desiderata

It goes without saying that the database produced by this materials discovery Creativity
Machine would require several human lifetimes to fathom and corroborate. It will be
criticized and ignored by many for its lack of precision, once contrasted against the tried
and true empirical measurements of materials science. Furthermore, the 'computational
accidents' comprising this database, will be largely overlooked, as flesh and blood
scientists repeat and savor what has already been accomplished by machine.

In light of this overall discomfort with the notion of autonomous materials discovery, it
may be constructive to think of the database produced through this Phase I effort as a
slightly out-of-focus survey of all potential binary and ternary chemistry that human
researchers may in turn mine for more exacting materials patterns: For example,
successive queries of this discovery database may reveal the systems A2B3 and A2B5 as
superlative niche performers, thus inspiring a series of rigorous laboratory investigations
that single out A2B4 as the more plausible and/or superior material. In this sense, this
expansive and speculative database is intended to drive materials tailoring and
optimization rather than represent a chemical panacea and end-all.
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Qualified by the above sentiments, allow me to point out that the Creativity Machine is a
connectionist paradigm capable of learning from its own mistakes. Therefore, it is not a
static software product, but an ongoing process that will, eventually bootstrap itself
toward the precision of empirically gleaned materials databases. In this sense, the
resulting improved database will progressively sharpen in focus until it rivals or exceeds
the precision of traditional materials data resources. Those that heed its findings will
acquire an extraordinarily powerful materials design tool.
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